《Python金融大数据分析》

金融行业已经以惊人的速度采用Python,一些大的投资银行和对冲基金使用Python来构建核心的交易和风险管理系统。本书可以帮助开发人员和量化分析人员入门Python,并指导他们掌握Python在计量金融学上的重要应用。  本书通过大量的实用示例并以一个大型的真实案例研究为基础,讲解如何为基于蒙特卡洛模拟的衍生品和风险分析开发一个成熟的框架。本书大部分内容使用了交互式的IPython Notebooks,并包含了如下主题。基础知识:Python数据结构,NumPy数组处理、用pandas进行时间序列分析,用matplotlib可视化,用PyTables进行高性能I/O操作,日期/时间信息处理和精选的实践。金融主题:使用了NumPy、SciPy和SymPy的数学技术,例如回归和优化;用于蒙特卡洛模拟、风险价值、风险信用价值计算的推断统计学;用于正态性检验、均方差投资组合优化、主成分分析(PCA)和贝叶斯回归的统计学。特殊主题:用于金融算法的高性能Python,如向量化和并行化;Python与Excel的集成;以及构建基于Web技术的金融应用程序。Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。    本书作者Yves Hilpsch是Python Quants(德国)股份有限公司的创始人和任事股东,也是Python Quants(纽约)有限责任公司的共同创办人。该集团提供基于Python的金融和衍生品分析软件(参见http://pythonquants.comhttp://quant-platfrom.comhttp://dx-analytics.com),以及和Python及金融相关的咨询、开发和培训服务。Yves还是Derivatives Analytics with Python(Wiley Finance,2015)的作者。作为获得数理金融学博士学位的商业管理专业研究生,他在萨尔州大学讲授计算金融学中的数值化方法课程。华盛顿Square Technologies公司联合创始人、总裁兼CTO Kirat Singh认为,“Python易于理解的语法、与C/C++的轻松集成以及各种数值计算工具,使其成为金融分析的自然选择。它正在快速替代主流金融机构中使用的语言和工具 ,并成为事实上的标准。”索书号:F830.41-39/201512P

 
责任者: 
(德)Yves Hilpisch著;姚军译.
出版社: 
人民邮电出版社
出版日期: 
2015-12-17
详细介绍: 
学科: 
经济